Use of *in vitro* cell assays and noninvasive imaging techniques to reduce animal experiments in drug development

J. Jia, M. Keiser, S. Oswald, W. Siegmund

Department of Clinical Pharmacology, Ernst-Moritz-Arndt University of Greifswald, Germany
absorption

distribution

metabolization

elimination

Bioavailability

Drug efficacy and side effect

portal vein

intestine

Liver

fecal elimination

intestinal elimination

hepatic elimination

Renale elimination
Membrane transporters

- can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs

- two major superfamilies — ATP-binding cassette (ABC) and solute carrier (SLC)
Expression of membrane transporters

International Transporter Consortium, Nat Rev Drug Discov. 2010
Uptake transporters

Intestine
- OCT1
- OCTN1
- OCTN2
- OATP1A2
- OATP2B1
- MRP1
- MRP2
- MDR1
- DEPT1
- ASBT
- MCT1

Blood-brain-barrier
- OCTN1
- OCTN2
- OAT3
- OAT1A2
- OATP2B1
- MDR1
- BCRP
- MRP1
- MRP2
- MRP4
- MRP5

Liver
- OCT1
- OCT3
- OATP1B1
- OATP1B3
- OATP2B1
- MRP3
- MRP4
- MRP6
- MRP2
- BSEP
- MDR1
- MDR3
- MATE1
- NTCP
- OCTN2
- OAT2
- OAT7

Hepatocyte

Brain capillary endothelial cells

International Transporter Consortium, Nat Rev Drug Discov. 2010
Efflux transporters

Intestine
- OCT1
- OCTN1
- OCTN2
- OATP1A2
- OATP2B1
- MRP1
- MRP3
- OSTα
- OSTβ
- PEPT1
- ASBT
- MCT1

Blood-bRAIN-barrier
- OCTN1
- OCTN2
- OAT3
- OAT1A2
- OATP2B1
- MDR1
- BCRP
- MRP1
- MRP2
- MRP4
- MRP5

Liver
- MRP3
- MRP4
- MRP6
- OCT1
- OCT3
- OATP1B1
- OATP1B3
- OATP2B1
- MDR1
- MDR3
- OAT2
- OAT7
- BSEP
- MATE1
- NTCP
- OCTN2
- BCRP
- MRPL

Hepatocyte

International Transporter Consortium, Nat Rev Drug Discov. 2010
The function of drug transporters can be explained by the use of probe drugs.

<table>
<thead>
<tr>
<th>Transporterprotein</th>
<th>Probe drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-glycoprotein</td>
<td>Verapamil, Talinolol, Digoxin</td>
</tr>
<tr>
<td>OATP1B1</td>
<td>Pravastatin</td>
</tr>
</tbody>
</table>

Associated with the organ removal from experimental animals.
Magnetic resonance imaging (MRI)
Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA, Primovist®)

- Gadolinium-based MRI- contrast agent
- significantly improves detection and characterization of focal liver lesion
- selektivly taken up in the liver cells
Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA, Primovist®)

- Gadolinium-based MRI- contrast agent
- significantly improves detection and characterization of focal liver lesion
- selektivly taken up in the liver cells
Evidences for Gd-EOB-DTPA (Primovist®) to be a substrate of hepatic transporters

- substrate of rat Oatp1a1 in Xenopus laevis oocytes
- known inhibitors of Oatps (BSP, rifampicin) compete with the hepatic enhancement in rodents (van Montfoort et al. 1999)
- enhancement in hepatocellular carcinoma tissue is predicted by expression of human OATP1B3 (Narita et al. 2009)
Hypothesis

- Gd-EOB-DTPA (Primovist®) as a new probe drug

- To visualize and characterise the function of transporter proteins and the drug absorption
 - cellular uptake and elimination via the same transporters like many drugs
Purpose

- **In vitro:**
 - Identify the transporters of Gd-EOB-DTPA (Primovist®) for the hepatic and intestinal uptake and elimination

- **In vivo:**
 - Pharmacokinetics (i.v. und oral) and MRI analysis with wild-type and Mrp2-deficient rats
 - Reduce the number of experimental animals
 - Gd-EOB-DTPA (Primovist®) in liver can be quantified using MRI without removal of tissue samples from experimental animals
In vitro method to analyze the substrate affinity to uptake transporters

Uptake assay

control cells

transfected cells

![Diagram showing uptake assay with substrate uptake in transfected cells compared to control cells.](image-url)
Stable transfected cell lines in the C_DAT

<table>
<thead>
<tr>
<th></th>
<th>HEK293-cells (human embrionic kidney)</th>
<th>MDCK2-cells (Madin-Darby canine kidney)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OATP1A2</td>
<td>*1
*2
*3</td>
<td>OATP1A2
*1
*2
*3</td>
</tr>
<tr>
<td>OATP1B1</td>
<td>*1a
*1b
*5
*15</td>
<td>OATP1B1
*1a
*1b
*5
*15</td>
</tr>
<tr>
<td>OATP1B3</td>
<td>WT
c.334T>G
c.699G>A
c.1564G>T
c.334T>G + 699G>A</td>
<td>OATP1B3</td>
</tr>
<tr>
<td>OATP2B1</td>
<td>WT
c.601G>A
c.995G>A
c.1457C>T</td>
<td>OATP2B1
c.601G>A
c.995G>A
c.1457C>T</td>
</tr>
<tr>
<td>OATP1C1 OATP3A1 OATP4A1 OATP4C1</td>
<td></td>
<td>OATP3A1 OATP4A1 OATP4C1</td>
</tr>
<tr>
<td>OCT1 OCT2 OCT3 OCTN2</td>
<td></td>
<td>OCT1 OCT2 OCT3 OCTN2</td>
</tr>
<tr>
<td>NTCP ASBT</td>
<td></td>
<td>NTCP ASBT</td>
</tr>
<tr>
<td>ABCB1 ABCC2</td>
<td></td>
<td>ABCB1 ABCC2 ABCC3</td>
</tr>
</tbody>
</table>
Characterization of stable transfected cell lines

HEK-OATP1A2

Substrate 1

$K_m = 23.1 \, \mu\text{mol/l}$

$V_{max} = 87.8 \, \text{pmol/mg} \times \text{min}$

Substrate 2

$K_m = 80.5 \, \mu\text{mol/l}$

$V_{max} = 20.5 \, \text{pmol/mg} \times \text{min}$

Substrate 1 + Inhibitor 1

$IC_{50} = 77.9 \, \mu\text{mol/l}$

Substrate 1 + Inhibitor 2

$IC_{50} = 21.3 \, \mu\text{mol/l}$
Affinity of Gd-EOB-DTPA (Primovist®) to uptake transporters

OATP1B1

OATP1B3

NTCP

Leonhardt et al., Drug Metab Disp 2010

Jia et al., Invest Radiol. 2013; accepted manuscript
Affinity of Gd-EOB-DTPA (Primovist®) to uptake transporters

<table>
<thead>
<tr>
<th>Transporter</th>
<th>K_m (mmol/l)</th>
<th>V_{max} (pmol/mg x min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OATP1B1</td>
<td>1,2</td>
<td>6,3</td>
</tr>
<tr>
<td>OATP1B3</td>
<td>0,5</td>
<td>7,4</td>
</tr>
<tr>
<td>NTCP</td>
<td>0,04</td>
<td>1,4</td>
</tr>
<tr>
<td>OATP2B1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ASBT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OCT3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Jia et al., Invest Radiol. 2013; accepted manuscript
inside-out vesicles

Cell lysis and crushing of the Plasmamembran

build the vesicle

Plasmamembran
MRP2/MRP3
Uptake of Gd-EOB-DTPA (Primovist®) using *inside-out* vesicle

Graph and data:

MRP2
- Graph showing the relationship between Gd-EOB-DTPA concentration (mmol/l) and uptake (pmol/mg x min).
- Table showing kinetic parameters:
 - K_m: 1.0 ± 0.5 (mmol/l)
 - V_{max}: 86.8 ± 31.3 (pmol/mg x min)

MRP3
- Graph showing the relationship between Gd-EOB-DTPA concentration (mmol/l) and uptake (pmol/mg x min).
- Table showing kinetic parameters:
 - K_m: 1.8 ± 0.3 (mmol/l)
 - V_{max}: 116 ± 15.9 (pmol/mg x min)

Source: Jia et al., Invest Radiol. 2013; accepted manuscript
In vivo study

- Animals: wild-type Lewis-rats
 Mrp2-deficient Lewis-rats

- Operation: Carotis catheter

- MRI: i.v.: bolus injection 0.025 mmol/kg
 p.o.: 0.025 mmol/kg

- Samples: Blood (i.v: 0-90 min; oral: 0-360 min)
 Urine (2d)
 Feces (5d)
MRI: after intravenous application

Graph:
- **X-axis:** Zeit (min)
- **Y-axis:** Liverenhancement (AU)
- **Legend:**
 - Wildtyp
 - Mrp2-defizient

Table:

<table>
<thead>
<tr>
<th></th>
<th>Wild-type</th>
<th>MRP2-deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>AUC₀₄ (AU x min)</td>
<td>14.8 ± 10.3</td>
<td>36.4 ± 8.5*</td>
</tr>
<tr>
<td>C_max (AU)</td>
<td>0.5 ± 0.1</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>T_max (min)</td>
<td>6.0 ± 3.1</td>
<td>48.6 ± 23.8*</td>
</tr>
</tbody>
</table>

Jia et al., Invest Radiol. 2013; accepted manuscript
Pharmacokinetics: after intravenous application

<table>
<thead>
<tr>
<th>Parameter</th>
<th>wild-type</th>
<th>Mrp2-deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC$_{0-\infty}$ (µg x h/ml)</td>
<td>3.35</td>
<td>7.49*</td>
</tr>
<tr>
<td>C_p (µg/ml)</td>
<td>10</td>
<td>10.4</td>
</tr>
<tr>
<td>$T_{1/2}$ (h)</td>
<td>2.12</td>
<td>1.95</td>
</tr>
<tr>
<td>A_e _urin _ (µg)</td>
<td>62.5</td>
<td>666.0</td>
</tr>
<tr>
<td>A_e _feces _ (µg)</td>
<td>1379.0</td>
<td>below LLQ*</td>
</tr>
</tbody>
</table>

* $p<0.05$ vs. wildtyp

Jia et al., Invest Radiol. 2013; accepted manuscript
Pharmacokinetics and MRI after oral administration

- Gd-EOB-DTPA (µg/ml)
 - Wildtyp
 - Mrp2-defizient

Zeit (min)

oral

native

nach 40 min

<table>
<thead>
<tr>
<th>p.o.</th>
<th>Wildtyp</th>
<th>Mrp2-defizient</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC $0\rightarrow\infty$ (µg x h/ml)</td>
<td>0,6</td>
<td>1,6</td>
</tr>
<tr>
<td>C_{p0} (µg/ml)</td>
<td>0,2</td>
<td>0,5</td>
</tr>
<tr>
<td>T_{max} (h)</td>
<td>1,3</td>
<td>0,9</td>
</tr>
<tr>
<td>Bioavailability (F)</td>
<td>17%</td>
<td>21%</td>
</tr>
<tr>
<td>$A_{e,\text{urin}}$ (µg)</td>
<td>29,7</td>
<td>194,0</td>
</tr>
<tr>
<td>$A_{e,\text{feses}}$ (µg)</td>
<td>3511,0</td>
<td>3775,0</td>
</tr>
</tbody>
</table>

Jia et al., Invest Radiol. 2013; accepted manuscript
The liver-specific uptake of Gd-EOB-DTPA (Primovist®) is realized by OATP1B1 and OATP1B3.

MRP2 is a major efflux transporter of the hepatobiliary elimination.

Cell-based in vitro assays have the potential to replace in vivo animal testing and provide reliable data.

Visualization by MRI can probably replace the quantitative determination of Gd-EOB-DTPA (Primovist®) in liver samples, thus reducing nearly 90% of the number of experimental animals.
Acknowledgment

Institute of pharmacology
Prof. Dr. Werner Siegmund
Prof. Dr. Stefan Oswald
Dr. Markus Keiser
Dr. Jette Penski
Dr. Gabriele Jedlitschky
Dr. Markus Grube
Danilo Wegner
Marten Möller
Gitta Schumacher

Institute of Pharmacy
Prof. Dr. Werner Weitschies
Dr. Gunnar Glöckl
Dr. Stefan Nagel

Institute of radiology
Prof. Dr. Norbert Hosten
Dr. Dorothee Puls
Dr. Jens-Peter Kühn
Stefan Hadlich